- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
McGorty, Ryan (2)
-
Rel, Ryle (2)
-
Brady, John (1)
-
Dang, Steven (1)
-
O’Shaughnessy, Conor (1)
-
Surineni, Sreenidhi (1)
-
Terwilliger, Dennis (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Shear driven patterning is seen in many soft matter systems. We use rheology and optical microscopy to probe the structures formed when we shear a colloid-polymer mixture containing temperature-sensitive microgel particles. By increasing the temperature, we can increase the particle attraction and transition from liquid-like to gel-like behavior. And by applying shear flow to the sample as the temperature and, hence, state of the system changes, we can affect the morphology of mesoscopic colloidal clusters. We can produce gels comprised of fibrous, elongated colloid-dense clusters, or we can form more isotropic clusters. The rheology is measured and shear-induced flocculation observed for colloid-polymer systems with different cluster morphologies. At shear rates high enough to produce elongated clusters but low enough to not break clusters apart, we observe log-like flocs that are aligned with the vorticity direction and roll between the parallel plates of our rheometer.more » « less
-
Dang, Steven; Brady, John; Rel, Ryle; Surineni, Sreenidhi; O’Shaughnessy, Conor; McGorty, Ryan (, Soft Matter)Microcapsules allow for the controlled containment, transport, and release of cargoes ranging from pharmaceuticals to fragrances. Given the interest from a variety of industries in microcapsules and other core–shell structures, a multitude of fabrication strategies exist. Here, we report on a method relying on a mixture of temperature-responsive microgel particles, poly( N -isopropylacrylamide) (pNIPAM), and a polymer which undergo fluid–fluid phase separation. At room temperature this mixture separates into colloid-rich (liquid) and colloid-poor (gas) fluids. By heating the sample above a critical temperature where the microgel particles shrink dramatically and develop a more deeply attractive interparticle potential, the droplets of the colloid-rich phase become gel-like. As the temperature is lowered back to room temperature, these droplets of gelled colloidal particles reliquefy and phase separation within the droplet occurs. This phase separation leads to colloid-poor droplets within the colloid-rich droplets surrounded by a continuous colloid-poor phase. The gas/liquid/gas all-aqueous double emulsion lasts only a few minutes before a majority of the inner droplets escape. However, the colloid-rich shell of the core–shell droplets can solidify with the addition of salt. That this method creates core–shell structures with a shell composed of stimuli-sensitive microgel colloidal particles using only aqueous components makes it attractive for encapsulating biological materials and making capsules that respond to changes in, for example, temperature, salt concentration, or pH.more » « less
An official website of the United States government
